1,060 research outputs found

    Geometrical geodesy techniques in Goddard earth models

    Get PDF
    The method for combining geometrical data with satellite dynamical and gravimetry data for the solution of geopotential and station location parameters is discussed. Geometrical tracking data (simultaneous events) from the global network of BC-4 stations are currently being processed in a solution that will greatly enhance of geodetic world system of stations. Previously the stations in Goddard earth models have been derived only from dynamical tracking data. A linear regression model is formulated from combining the data, based upon the statistical technique of weighted least squares. Reduced normal equations, independent of satellite and instrumental parameters, are derived for the solution of the geodetic parameters. Exterior standards for the evaluation of the solution and for the scale of the earth's figure are discussed

    Effect of parallactic refraction correction on station height determination

    Get PDF
    The effect of omitting the parallactic refraction correction for satellite optical observations in the determination of station coordinates is analyzed for a large satellite data distribution. A significant error effect is seen in station heights. A geodetic satellite data distribution of 23 close earth satellites, containing 30,000 optical observations obtained by 13 principal Baker-Nunn camera sites, is employed. This distribution was used in a preliminary Goddard Earth Model (GEM 1) for the determination of the gravity field of the earth and geocentric tracking station locations. The parallactic refraction correction is modeled as an error on the above satellite data and a least squares adjustment for station locations is obtained for each of the 13 Baker-Nunn sites. Results show an average station height shift of +8 meters with a dispersion of plus or minus 0.7 meters for individual sites. Station latitude and longitude shifts amounted to less than a meter. Similar results are obtained from a theoretical method employing a probability distribution for the satellite optical observations

    Sea surface determination from space: The GSFC geoid

    Get PDF
    The determination of the sea surface/geoid and its relative variation were investigated and results of the altimeter experiment on Skylab to test the geoid are discussed. The spaceborne altimeter on Skylab revealed that the sea surface of the world's oceans can be measured with an accuracy in the meter range. Surface variations are discussed as they relate to those computed from satellite orbital dynamics and ground based gravity data. The GSFC geoid was constructed from about 400,000 satellite tracking data (range, range rate, angles) and about 20,000 ground gravity observations. One of the last experiments on Skylab was to measure and/or test this geoid over almost one orbit. It was found that the computed water surface deviates between 5 to 20 m from the measured one. Further outlined are the influence of orbital errors on the sea surface, and numerical examples are given based upon real tracking data. Orbital height error estimates were computed for geodetic type satellites and are found to be in the order of 0.2 to 5 meters

    Evaluation of the Goddard range and range rate system at Rosman by intercomparison with GEOS 1 long-arc orbital solutions

    Get PDF
    Evaluation of Goddard range and range rate system at Rosman by intercomparison with GEOS 1 long-arc orbital solution

    Gravity model comparison using Geos-1 long arc orbital solutions

    Get PDF
    Gravity model comparison using Geos-1 long arc orbital solution

    Optimum data weighting and error calibration for estimation of gravitational parameters

    Get PDF
    A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 (Goddard Earth Model, 36x36 spherical harmonic field) were employed toward application of this technique for gravity field parameters. Also, GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized here. The method employs subset solutions of the data associated with the complete solution and uses an algorithm to adjust the data weights by requiring the differences of parameters between solutions to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting as compared to the nominal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model

    A refined gravity model from Lageos (GEM-L2)

    Get PDF
    For abstract for A83-1354

    Improvement in the geopotential derived from satellite and surface data (GEM 7 and 8)

    Get PDF
    A refinement was obtained in the earth's gravitational field using satellite and surface data. In addition to a more complete treatment of data previously employed on 27 satellites, the new satellite solution (Goddard Earth Model 7) includes 64,000 laser measurements taken on 7 satellites during the international satellite geodesy experiment (ISAGEX) program. The GEM 7, containing 400 harmonic terms, is complete through degree and order 16. The companion solution GEM 8 combines the same satellite data as in GEM 7 with surface gravimetry over 39% of the earth. The GEM 8 is complete to degree and order 25. Extensive tests on data independent of the solution show that the undulation of the geoidal surface computed by GEM 7 has an accuracy of about 3m (rms). The overall accuracy of the geoid estimated by GEM 8 is estimated to be about 4-1/4m (rms), an improvement of almost 1m over previous solutions

    Goddard earth models (5 and 6)

    Get PDF
    A comprehensive earth model has been developed that consists of two complementary gravitational fields and center-of-mass locations for 134 tracking stations on the earth's surface. One gravitational field is derived solely from satellite tracking data. This data on 27 satellite orbits is the most extensive used for such a solution. A second solution uses this data with 13,400 simultaneous events from satellite camera observations and surface gravimetric anomalies. The satellite-only solution as a whole is accurate to about 4.5 milligals as judged by the surface gravity data. The majority of the station coordinates are accurate to better than 10 meters as judged by independent results from geodetic surveys and by Doppler tracking of both distant space probes and near earth orbits

    Gravity field information from Gravity Probe-B

    Get PDF
    The Gravity Probe-B Mission will carry the Stanford Gyroscope relativity experiment into orbit in the mid 1990's, as well as a Global Positioning System (GPS) receiver whose tracking data will be used to study the earth gravity field. Estimates of the likely quality of a gravity field model to be derived from the GPS data are presented, and the significance of this experiment to geodesy and geophysics are discussed
    corecore